Mutation and Selection on the Wobble Nucleotide in tRNA Anticodons in Marine Bivalve Mitochondrial Genomes
نویسندگان
چکیده
BACKGROUND Animal mitochondrial genomes typically encode one tRNA for each synonymous codon family, so that each tRNA anticodon essentially has to wobble to recognize two or four synonymous codons. Several factors have been hypothesized to determine the nucleotide at the wobble site of a tRNA anticodon in mitochondrial genomes, such as the codon-anticodon adaptation hypothesis, the wobble versatility hypothesis, the translation initiation and elongation conflict hypothesis, and the wobble cost hypothesis. PRINCIPAL FINDINGS In this study, we analyzed codon usage and tRNA anticodon wobble sites of 29 marine bivalve mitochondrial genomes to evaluate features of the wobble nucleotides in tRNA anticodons. The strand-specific mutation bias favors G and T on the H strand in all the 29 marine bivalve mitochondrial genomes. A bias favoring G and T is also visible in the third codon positions of protein-coding genes and the wobble sites of anticodons, rejecting that codon usage bias drives the wobble sites of tRNA anticodons or tRNA anticodon bias drives the evolution of codon usage. Almost all codon families (98.9%) from marine bivalve mitogenomes support the wobble versatility hypothesis. There are a few interesting exceptions involving tRNA(Trp) with an anticodon CCA fixed in Pectinoida species, tRNA(Ser) with a GCU anticodon fixed in Mytiloida mitogenomes, and the uniform anticodon CAU of tRNA(Met) translating the AUR codon family. CONCLUSIONS/SIGNIFICANCE These results demonstrate that most of the nucleotides at the wobble sites of tRNA anticodons in marine bivalve mitogenomes are determined by wobble versatility. Other factors such as the translation initiation and elongation conflict, and the cost of wobble translation may contribute to the determination of the wobble nucleotide in tRNA anticodons. The finding presented here provides valuable insights into the previous hypotheses of the wobble nucleotide in tRNA anticodons by adding some new evidence.
منابع مشابه
Base-Pairing Versatility Determines Wobble Sites in tRNA Anticodons of Vertebrate Mitogenomes
BACKGROUND Vertebrate mitochondrial genomes typically have one transfer RNA (tRNA) for each synonymous codon family. This limited anticodon repertoire implies that each tRNA anticodon needs to wobble (establish a non-Watson-Crick base pairing between two nucleotides in RNA molecules) to recognize one or more synonymous codons. Different hypotheses have been proposed to explain the factors that ...
متن کاملConflict between Translation Initiation and Elongation in Vertebrate Mitochondrial Genomes
The strand-biased mutation spectrum in vertebrate mitochondrial genomes results in an AC-rich L-strand and a GT-rich H-strand. Because the L-strand is the sense strand of 12 protein-coding genes out of the 13, the third codon position is overall strongly AC-biased. The wobble site of the anticodon of the 22 mitochondrial tRNAs is either U or G to pair with the most abundant synonymous codon, wi...
متن کاملCodon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection.
We analyze the frequencies of synonymous codons in animal mitochondrial genomes, focusing particularly on mammals and fish. The frequencies of bases at 4-fold degenerate sites are found to be strongly influenced by context-dependent mutation, which causes correlations between pairs of neighboring bases. There is a pattern of excess of certain dinucleotides and deficit of others that is consiste...
متن کاملAvoidance of antisense, antiterminator tRNA anticodons in vertebrate mitochondria
Protein synthesis (translation) stops at stop codons, codons not complemented by tRNA anticodons. tRNAs matching stops, antitermination (Ter) tRNAs, prevent translational termination, producing dysfunctional proteins. Genomes avoid tRNAs with anticodons whose complement (the anticodon of the 'antisense' tRNA) matches stops. This suggests that antisense tRNAs, which also form cloverleaves, are o...
متن کاملThe tRNA species for redundant genetic codons NNU and NNC. A thought on the absence of phenylalanine tRNA with AAA anticodon in Escherichia coli.
The redundant genetic codons NNU and NNC (where N is A, T, G, or C) specify the same amino acid and are decoded by their cognate tRNAs, which contain either a guanosine or a modified base in the wobble position of the anticodons. Since tRNAs with an adenosine in the wobble position of the anticodon, which are complementary to the NNU codons, are not found naturally, we have generated a tRNA(Phe...
متن کامل